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Geometric Duality via Rockafellar Duality
by
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Abstract. A specialization of Rockafellar duality to (generalized)
geometric duality provides an efficient mechanism for extending to

the latter the theory previously developed for the former,
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1. Introduction. There are at least five different formulations of

duality -- the original Fenchel formulation [3,8), the (generalized) ]
geometric programming formulation [1,4,5], the Fenchel-Rockafellar
formulation [6,8], the ordinary Lagrangian formulation [10,2,8], and | 8
the Rockafellar formulation [7,8,9]. Although each formulation has
its own advantages and disadvantages, each can also be viewed as a :
special case of each of the other four.

The appropriate specializations have already been carried out in

[4,8,9], but only for a very limited geometric programming formulation.

Thus, this paper complements those references by specializing the Rocka-
fellar formulation to the most general geometric programming formula-
tion. ’

Section 2 presents a version of the Rockafellar formulation that
facilitates the specialization given in Section 3. This specializa-
tion does not require convexity assumptions and uses only elementary

real analysis.

2. Rockafellar duality. Suppose that g:C 1s a (proper) function g

with a nonempty (effective) domain C ¢ EN , and assume that the inde-

pendent variable (d,p) in C 1s the Cartesian product of a "decision"

(vector) variable d and a "perturbation" (vector) parameter p .
Consider the parameterized family (G that consists of the follow-

ing optimization problems A(p)




PROBLEM A(p) . Using the "feasible solution" set

s(p) £ {d|(d,p) €} ,

calculate both the "problem infimum"

>

inf g(d,p)
d €s(p)

o(p)

. ...“‘ -

and the "optimal solution'" set

s“(p) £ (d €5(p)|s(d,p) = o(p)} -

For a given perturbation p , problem A(p) 1is either '"consistent"
or "inconsistent", depending on whether the feasible solution set S(p)
is nonempty or empty. The (effective) domain of the infimum function @

is the "feasible perturbation' set
A iy
P = {p|problem A(p) is consistent]} , |

which is obviously identical to {p](d,p) € C for at least one d} and
hence is not empty. Unlike the function g , the function ¢ may
assume the value - . However, for our purposes, it is not advan-
tageous to follow Rockafellar's custom of artificially defining g and

® to be +o outside their respective domains C and P .




Now, suppose that g:C has a "conjugate transform” h:D ; that is,

suppose there is a function h with a nonempty domain

D2 {(q,e)] sup [(q,d) + (e,p) = g(d,p)] < +a}
(dlp)ec

and function values

2 sup [{q,d) + Ce,p) - g(d,p)] .

(d,p)ec

h(q,e)

The inner product (q,d) associates the "dual perturbation" parameter gq
with the "primal decision" variable d , and the inner product (e,p)
associates the "dual decision" variable e with the "primal perturbation"
parameter p .

Consider the parameterized family 8 that consists of the following

optimization problems B(q) .

PROBLEM B(q). Using the feasible solution set

T(q) © {e](q,e) €D} ,

calculate both the problem infimum

¥(a) £ tnf  h(qe)
e €T(q)




and the optimal solution set
+*
T (q) 2 {e € T(q)|n(q,e) = ¥(a)] .

Needless to say, the domain of the infimum function ¢ 1is the

feasible perturbation set

Q & {q|problem B(q) is consistent} ,

which is clearly not empty.

Due to the known symmetry [3,8] of the conjugate transformation
on the class of all closed convex functions g:C (as well as the
obvious symmetry of the preceding association of perturbation parame-
ters and decision variables), families (G and 8 are termed Rocka-

fellar dual families, and problems A(0O) and B(0) are termed Rocka-

fellar dual problems. Actually, Rockafellar [7,8,9] formulates @
as a family of maximization problems by placing minus signs in front
of the sup and e 1in the definition of h:D . Although that formula-
tion facilitates specializations [7,8] to (the standard formulations of)
linear programming duality and ordinary programming duality, the pre-
ceding formulation will facilitate our specialization to geometric pro-
gramming duality.

To (re)orient the reader toward the preceding formulation, we now
summarize Rockafellar's main results in terms of that formulation. In

particular, the primal infimum function ¢ 1is finite everywhere on its

domain P and has a conjugate transform (with a nonempty domain and




finite function values) if and only if the dual problem B(0) is con-

sistent; in which case

(1) the dual objective function h(0,+):T(0) 1is the conjugate

transform of o:P,

(11) the dual infimum (0) 1is finite if and only if O is in

the domain P° of the closed convex hull qpc:PC of @:P , in which

event
0 = ¢%(0) + v(0) and 3°(0) = T (0) ,

(i111) if the primal problem A(0) 4is also consistent, then O

is in the domain P¢ and

e (0) < @(0) , with equality only if 3 (0) = dp(0) ,

(iv) given that g:C 1is convex and closed, ¢ 1is convex on P

and can differ from @c only at relative boundary points of P .

It is important to note that the preceding results involve the

whole Rockafellar family G but only one problem from the whole Rocka-~

fellar dual family @ -- the Rockafellar dual problem B(0) .

3., Geometric duality. Using the notation given in section 2.2 and

subsection 3.3.5 of [5], assume that

A A
d= (x,«) and p = (u,u) ;

SRS AR SIS X

e




STEEET

TATR

|

and suppose that

¢ £ [0emu,m) | €, koL (lved i et s s

x €X; and gi(xi+ui)+p.1‘0, 1 €1}
and

S(K)K:u)u) e G(x"’u:K) é"} 80(x0+“o) n Z g}(xjwj ,K

J P

Then, the Rockafellar family G 1is the "geometric programming

family" F (described in subsection 3.3.5 of [5]); and the crucial
question now is whether the Rockafellar dual family @ is the '"geo-
metric programming dual family" G (described in subsections 3.%.4 and
3.3.5 of [5]). To obtain the answer, we need to compute the conjugate
transform h:D of g:C in terms of both the "dual" Y of the given
cone X and the conjugate transforms hk:Dk of the given functions
gk:Ck,ke {ojutwr .

To compute h:D , assume that

2 (

qé(v,v) and e 2,5}

where v has the same component partitioning as x , and where 2z has

L T e




the same component partitioning as u . Then

h(v,v,z,\) = sup {(vo,xo) +¥(vi,xi)+ E(vj,xj)+ Zvjxj
H J J

(%,k,u

S L Q.6
+ (zo,uo)+ 2 (z7,u ) + Z(zj,uj)+ Z)\iui'so(x +u)
I J 1
..?g;(xj+uj,;<j)|xo+uoeCo;xi+uieCi,ieI;(xj+uJ,Kj)eC;,j €J
b O §
x €X; and gi(x +u”) + My S 0, 1€1},
which 1s clearly finite only if }\120, 1€I ; in which case

h(v,v,2,0) = sup (1400,x%) + (2%,u%) - g (x%u?))
(x,k,u)

+Z [(Vi:xi> + (zi,ui) - )\igi(x1+ui)]
I

+3 [(vj,xj_) + (zj,uj) +V,K
J

§<g8s edrad e 1

0 e sxteut € ,i€1; (x3+uj,;<3) €c},i€dixex]

or

h(v,v,2,0) = sup ([0, x%r”) - g (xOu®)]
(x,k,u)

+3 [(zi+v1,xi+u1) - )\igi(ximi)]
I

i Tt
g} (el ey )1

+ Z[(zj+vj,xj+uj) ENT K
7 Jivd

i

- (z,x) - (v,u)lxo+uO€Co;x +u1 GCi,i €I;

(xj+uj,'<j) EC;,J €J;x€X] .
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The following lemma provides another condition that is necessary

, for the finiteness of the preceding expression.

Lemma A. The preceding expression for h(v,y,z,\) is finite only if

3 2 -VeY |

Proof. If z-vgyY , then there is an X €X such that (z-v,;) < 0
: in which event we choose ¢ so that: ZOECO; :ieci, ieI; and
H (:j,Kj)GC;, j€J, for some fixed k 2 0 . Letting x(s) 2 6x and

u(s) . c - 8% , we observe that (x(s),k,u(s)) satisfies the restric-

tions on (x,x,u) for each s 2 O . Thus

B

(120,20 - g (O)1 + )i:[<z1+vi,?> - A8, (ED)]

- g;(zj,xj)] - (z,s;) - (v,z-s;\}

! + ?[(zj+vj,zj§ VK

é

sh(v,v,z,\)

for each s 2 0 ;

and hence h(v,y,z,\) = +o because

lim [-(z,s;) - (v,c-sx)} = lim {-(v,Z) + 8(v-2,%)} = 4o 1
i S = 4@ 8 4 4@ |
’
by virtue of the property (z-v,x) <0 . ) q.e.d.

Now, if z-veY , then z=y4+v for some y €Y ; in which case
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h(v,v,z,\) = sup {[(z0+vo,x +u ) - go(x +u )]
(x)K:“)

I M (O e S WO )
I
+ E[(zj+vj,x +uj) + Vv Kj - g;(x +u",x )]
d
= A¥axy = (v,x+u>|xo+uoeco; x1+u16C1, igl ;

(xj+uj,xj)€C;, J€J ; x€a,

Since O s (y,x) for each x€X , it is easily seen that

h(V,V,Z,X) = 8up [[<zo 0 O

(k,u)

2 so(u )]

+ ;[(ziwi,ui) - Xisi(ui)]

+ ?[(zjwj,uj\ *VKy Sj(uj,Kj)] - <V>,“)|

uOGCO; uiECi, 1e1; (uj,Kj)éc";: jed}

{uoseug [¢z°,u%) - g, (u”)] + Eui?ﬁ [ty - ags, (u))

+
I DR L N IR MO I I
T (ud,k, )ect
&
Consequently, (v,v,z,A)€éD 1if and only if; )‘12 0, 1€1; z=y+v for
some y€Y; and each term on the right-hand side of the preceding equations
is finite. Of course, the first term is finite if and only if zOEDO j L

which case the first term is equal to ho(zo) . The finiteness of the

- 10 =




remaining terms can be conveniently characterized with two lemmas.
The following lemma characterizes the finiteness of the terms

involving the index set I.

Lemma B. Given that X, 20, the gup ((zi,ui> - )\igi(ui)] is finite if
u-€C
and only if (zi,)\i)EDI , in which case

sip LGt aty e A (1 = BEGe )
uiec1

Proof. Simply observe that

sup (zi,ui) if )\, =0
uiECi
b S, ¢ i i i

:up ((z",u”) = kigi(u )1 = xihi(z /ki) 1f ), >0 and 2z € ADy
u eci

+ if )\, >0 and :t g \,D

i i L

and then use the defining formula for hI:D; v q.e.d.

The next lemma characterizes the finiteness of the terms involving

the index set J .

Lemma C. The sup [(zj,uj> + VKy T g;(uj,xj)] is finite if and
(udyky) €€
only if both z-‘éDj and hj(zj) + vy < 0 , in which case

sup [(zj,uj} + VK - s;(uj.xj)) =0 .

(uj,Kj) EC}

- 11 -




Proof. First, observe that

sup [<zj3uj> + VjKj - gj(uj)Kj)]

h| +
(u }Kj)ecj
= sup [sup[(zj,uj) + VjKj - g'g(uj,xj)“uj,xj)ec;}]
K ,20 uj
]
= sup[ijj + sup{(zj,uj) - g;(uj,xj)\(uj,xj)ecg}]
]
Kk ,20 u
i
P sup{(zj:uj> - 8sup (uj)dj>‘ sup <udeJ) < +°’} if KJ =0
3 ] J
u d EDj d GDJ
= sup ijj +
szo
aup{(zj uj) - K,8 (uj/K )|ujﬁ< €c.} if k, >0
| £ 373 i i | ] -
u
0 if k=0 and zjeﬁj
+ @ if Ky = 0 ana 2} ¢D
= sup |v.k, + ) 3 ;
szo 33 + @ if Ky >0 and z° ¢ Dj
5 thj(zj) if Kj>0 and zjeDj 3

where the final step makes use of the fact that the zero function with

domain D, (the topological closure of D, ) is the conjugate trans-

3 3

form of the conjugate transform of the zero function with domain Dj .

Now, note that the last expression is finite only if zj € Dj , in
which case the last expression clearly
= sup [v,k, + k. h (zj)] .
i 3 3

K 20
J

.10 -




But this expression is obviously finite if and only if hj(zj) + vy <0,

in which case this expression is clearly zero. q.e.d.

We have now shown that

D = {(v,v,z,x)‘xi 2 0, 1 €1; z=y+v for some yE€Y; zO GDO;

(zi,ki) EDI,iéI; 21 €D, and hj(zj)-szo,j €J}

and

h(v,v,2,0) = ho(2) + Lalztn,) .
1

Consequently, the Rockafellar dual problem B(0) 1is the 'geometric

programming dual problem" B (described in subsection 3.3.L4 of [5]).

Although the Rockafellar dual family B 1is slightly different from the

geometric programming dual family G (alluded to in subsection 3.3.5

of {5]), the difference is inconsequential in view of the final para-

graph of section 2. {
H

However, the relation 2z = y+v shows that y can be used instead ﬁ

of z as a dual decision variable -- a change of variables that clearly

induces a one-to-one mapping from 8 onto G . In particular, this

mapping simply translates the (domain of the) dual objective function q

h(v,y;+) through (-v,0) -- a mapping that clearly leaves the problem |

infimum ¢(v,y) invariant while translating the optimal solution set i

3¢

T (v,v) through (-v,0) . 4
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